PAT 1122. Hamiltonian Cycle (25)
The “Hamilton cycle problem” is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a “Hamiltonian cycle”. In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2< N <= 200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format “Vertex1 Vertex2”, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format: n V1 V2 … Vn where n is the number of vertices in the list, and Vi’s are the vertices on a path.
Output Specification:
For each query, print in a line “YES” if the path does form a Hamiltonian cycle, or “NO” if not.
Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO
闭合的哈密顿路径称作哈密顿回路(Hamiltonian cycle),含有图中所有顶点的路径称作哈密顿路径。 明白了什么是哈密顿回路,这个题目是不难了,首先给出的路径必须比题目给出的结点数大1,因为哈密顿路径经过图中所有顶点,而哈密顿回路则是在哈密顿路径的基础上回到起点,所以哈密顿回路的顶点数应该比给出的图的顶点大1。然后这个给出的哈密顿回路应该是在图中表现为连通的。最后,这个给出的哈密顿回路必须经过除起点外的其余结点一次,经过起点两次。 下面给出的代码用graph题目给出的图 isConnected方法测试给出的哈密顿回路在图中的连通性,pre表示前一个结点,v[i]表示当前结点,如果v[i]到pre在图中有路径则是连通的,否则就不连通的 isHamilt方法测试给出的哈密顿回路是不是哈密顿回路,第一个结点比如和最后一个结点相同才能满足闭合这个条件,times数组用来表示哈密顿回路中各结点出现的次数。如果除起始结点外,其余结点的出现次数不为1,则不是哈密顿回路,如果起始节点出现的次数不为2,则不是哈密顿回路
1 |
|